head

Senin, 12 Mei 2014

gerak parabola

Gerak Parabola (Perpaduan GLB dan GLBB)- 
Perhatikanlah lintasan yang dibentuk oleh bola basket yang dilemparkan ke dalam ring. Lintasan bola basket tersebut berbentuk parabola. Gerak yang lintasannya berbentuk parabola disebut gerak parabola. Contoh umum gerak parabola adalah gerak benda yang dilemparkan ke atas membentuk sudut tertentu terhadap permukaan tanah. Gerak parabola dapat dipandang dalam dua arah, yaitu arah vertikal (sumbu-y) yang merupakan gerak lurus berubah beraturan (GLBB), dan arah horizontal (sumbu-x) yang merupakan gerak lurus beraturan (GLB). Perhatikan Gambar 1.15 berikut.
Gambar 1.15 Arah gaya pada lintasan gerak parabola.

Gerak pada sumbu-x (horizontal) adalah gerak lurus beraturan karena kecepatan benda di setiap titik bernilai konstan dan berlaku persamaan
vx = v0x = v0 cos α
Adapun, jarak mendatar yang ditempuh oleh sebuah benda ditentukan oleh persamaan
x = vx t = v0cos α t ……… (1–35)
Gerak pada sumbu-y (vertikal) adalah gerak lurus berubah beraturan, karena benda mengalami perubahan kecepatan akibat percepatan gravitasi Bumi. Dalam hal ini, arah gerak benda vertikal ke atas sehingga persamaan kecepatan geraknya pada setiap titik adalah
vy = v0y gt ………….. (1–36)
oleh karena v0y = v0 sin α , Persamaan (1–36) dapat dituliskan menjadi
vy = v0 sin α – gt …………… (1–37)
Posisi benda pada sumbu-y (menurut ketinggian) dapat dituliskan dengan persamaan berikut
y = v0y t – ½ gt2 …………….. (1–38)
atau
y = v0 sin α t – ½gt2 ………….. (1–39)
1. Kecepatan dan Arah Kecepatan Benda di Sembarang Titik
Pada gerak parabola, benda memiliki kecepatan pada komponen sumbu-x dan sumbu-y sehingga besar kecepatan benda di sembarang titik secara matematis, dirumuskan sebagai berikut.

Arah kecepatan benda terhadap sumbu mendatar (sumbu-x) dirumuskan sebagai berikut.

Oleh karena nilai vx selalu positif maka positif atau negatifnya sudut θ bergantung pada nilai vy.
2. Beberapa Persamaan Khusus pada Gerak Parabola
Persamaan-persamaan khusus gerak parabola ini hanya berlaku untuk gerak parabola dengan lintasan dari tanah, kemudian kembali lagi ke tanah seperti pada Gambar 1.16.

Gambar 1.16 Lintasan gerak parabola benda dengan titik tertinggi di B dan titik terjauh di C.
Pada contoh gerak parabola tersebut, suatu benda bergerak dari titik A dengan kecepatan awal v0 dan sudut θ . Benda tersebut mencapai titik tertinggi di titik B dan jarak terjauh di titik C.
a. Waktu untuk Mencapai Titik Tertinggi (Titik B)
Pada saat benda yang melakukan gerak parabola mencapai titik tertinggi, kecepatan benda pada komponen vertikal (sumbu-y) vy = 0. Persamaannya adalah sebagai berikut.
vy = v0y gtAB
0 = v0 sin α – gtAB
gtAB = v0 sin α

Ketinggian benda di titik tertinggi adalah H = ½ g(tBC)2. Sifat simetri grafik parabola memperlihatkan bahwa waktu yang diperlukan benda untuk mencapai titik tertinggi dari posisi awal (tAB), sama dengan waktu tempuh benda dari titik tertinggi ke jarak terjauh (tBC). Dengan demikian, akan diperoleh persamaan

b. Tinggi Maksimum (H )
Tinggi maksimum benda yang melakukan gerak parabola dapat ditentukan dari penurunan Persamaan (1–43) sebagai berikut.

dikuadratkan menjadi

sehingga diperoleh

c. Jarak Terjauh (X )
Waktu tempuh untuk mencapai titik terjauh (titik C) sama dengan dua kali waktu yang diperlukan untuk mencapai titik tertinggi (tAC = 2 tAB). Jarak terjauh yang dicapai benda pada sumbu-x (dilambangkan dengan X) adalah

Menurut trigonometri, 2 sinα cos α = sin 2α sehingga persamaan untuk jarak terjauh yang dapat dicapai benda dapat dituliskan

Perbandingan antara jarak terjauh (X) dan tinggi maksimum (H) akan menghasilkan persamaan


Jenis-jenis Gerak Parabola
Dalam kehidupan sehari-hari terdapat beberapa jenis gerak parabola.
Pertama, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah. Dalam kehidupan sehari-hari terdapat banyak gerakan benda yang berbentuk demikian. Beberapa di antaranya adalah gerakan bola yang ditendang oleh pemain sepak bola, gerakan bola basket yang dilemparkan ke ke dalam keranjang, gerakan bola tenis, gerakan bola volly, gerakan lompat jauh dan gerakan peluru atau rudal yang ditembakan dari permukaan bumi.

Kedua, gerakan benda berbentuk parabola ketika diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal, sebagaimana tampak pada gambar di bawah. Beberapa contoh gerakan jenis ini yang kita temui dalam kehidupan sehari-hari, meliputi gerakan bom yang dijatuhkan dari pesawat atau benda yang dilemparkan ke bawah dari ketinggian tertentu.

Ketiga, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dari ketinggian tertentu dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah.

Menganalisis Gerak Parabola
Gerakan benda setelah diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal.

Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y.v0x merupakan kecepatan awal pada sumbu x, sedangkan Kecepatan awal pada sumbu vertikal (voy) = 0. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x.
Menganalisis Komponen Gerak Parabola secara terpisah
Sekarang, mari kita turunkan persamaan untuk Gerak Peluru. Kita nyatakan seluruh hubungan vektor untuk posisi, kecepatan dan percepatan dengan persamaan terpisah untuk komponen horisontal dan vertikalnya. Gerak peluru merupakan superposisi atau penggabungan dari dua gerak terpisah tersebut
Komponen kecepatan awal
Terlebih dahulu kita nyatakan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y.
Catatan : gerak peluru selalu mempunyai kecepatan awal. Jika tidak ada kecepatan awal maka gerak benda tersebut bukan termasuk gerak peluru. Walaupun demikian, tidak berarti setiap gerakan yang mempunyai kecepatan awal termasuk gerak peluru
Karena terdapat sudut yang dibentuk, maka kita harus memasukan sudut dalam perhitungan kecepatan awal. Mari kita turunkan persamaan kecepatan awal untuk gerak horisontal (v0x) dan vertikal (v0ydengan bantuan rumus Sinus, Cosinus dan Tangen. Dipahami dulu persamaan sinus, cosinus dan tangen di bawah ini.

Berdasarkan bantuan rumus sinus, cosinus dan tangen di atas, maka kecepatan awal pada bidang horisontal dan vertikal dapat kita rumuskan sebagai berikut :


Keterangan : vadalah kecepatan awal, v0x adalah kecepatan awal pada sumbu x, v0y adalah kecepatan awal pada sumbu y, teta adalah sudut yang dibentuk terhadap sumbu x positip.
Kecepatan dan perpindahan benda pada arah horisontal
Kita tinjau gerak pada arah horisontal atau sumbu x. Sebagaimana yang telah dikemukakan di atas, gerak pada sumbu x kita analisis dengan Gerak Lurus Beraturan (GLB). Karena percepatan gravitasi pada arah horisontal = 0, maka komponen percepatan ax = 0. Huruf x kita tulis di belakang a (dan besaran lainnya) untuk menunjukkan bahwa percepatan (atau kecepatan dan jarak) tersebut termasuk komponen gerak horisontal atau sumbu x. Pada gerak peluru terdapat kecepatan awal, sehingga kita gantikan v dengan v0.
Dengan demikian, kita akan mendapatkan persamaan Gerak Peluru untuk sumbu x :

Keterangan : vadalah kecepatan gerak benda pada sumbu x, v0x adalah kecepatan awal pada sumbu x, x adalah posisi benda, t adalah waktu tempuh, x0 adalah posisi awal. Jika pada contoh suatu gerak peluru tidak diketahui posisi awal, maka silahkan melenyapkan x0.
Perpindahan horisontal dan vertikal
Kita tinjau gerak pada arah vertikal atau sumbu y. Untuk gerak pada sumbu y alias vertikal, kita gantikan x dengan y (atau h = tinggi), v dengan vy, v0 dengan voy dan a dengan -g (gravitasi). Dengan demikian, kita dapatkan persamaan Gerak Peluru untuk sumbu y :

Keterangan : vy adalah kecepatan gerak benda pada sumbu y alias vertikal, v0y adalah kecepatan awal pada sumbu y, g adalah gravitasi, t adalah waktu tempuh, y adalah posisi benda (bisa juga ditulis h), y0 adalah posisi awal.
Berdasarkan persamaan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y yang telah kita turunkan di atas, maka kita dapat menulis persamaan Gerak Peluru secara lengkap sebagai berikut :

Setelah menganalisis gerak peluru secara terpisah, baik pada komponen horisontal alias sumbu x dan komponen vertikal alias sumbu y, sekarang kita menggabungkan kedua komponen tersebut menjadi satu kesatuan. Hal ini membantu kita dalam menganalisis Gerak Peluru secara keseluruhan, baik ditinjau dari posisi, kecepatan dan waktu tempuh benda. Pada pokok bahasan Vektor dan Skalar telah dijelaskan teknik dasar metode analitis. Sebaiknya anda mempelajarinya terlebih dahulu apabila belum memahami dengan baik.
Persamaan untuk menghitung posisi dan kecepatan resultan dapat dirumuskan sebagai berikut.

Pertama, vx tidak pernah berubah sepanjang lintasan, karena setelah diberi kecepatan awal, gerakan benda sepenuhnya bergantung pada gravitasi. Nah, gravitasi hanya bekerja pada arah vertikal, tidak horisontal. Dengan demikian vx bernilai tetap.
Kedua, pada titik tertinggi lintasan, kecepatan gerak benda pada bidang vertikal alias vy = 0. pada titik tertinggi, benda tersebut hendak kembali ke permukaan tanah, sehingga yang bekerja hanya kecepatan horisontal alias vx, sedangkan vbernilai nol. Walaupun kecepatan vertikal (vy) = 0, percepatan gravitasi tetap bekerja alias tidak nol, karena benda tersebut masih bergerak ke permukaan tanah akibat tarikan gravitasi. jika gravitasi nol maka benda tersebut akan tetap melayang di udara, tetapi kenyataannya tidak teradi seperti itu.
Ketiga, kecepatan pada saat sebelum menyentuh lantai biasanya tidak nol.


Tidak ada komentar:

Bahasa lampung

 Nama : .............................................................  Kelas  : ,...................  BAHASA LAMPUNG Dialek O Terjemahkanlah...